Rehabilitation Selection for Asphalt Overlay, Mill and Overlay, Cold In Place Recycling and Full Depth Reclamation

David Rettner, PE
American Engineering Testing, Inc.
Outline

- Project Selection
- Overlay
- Mill and Overlay
- Cold In Place Recycling
- Full Depth Reclamation

- Comparisons
Project Selection
Overlay/Mill and Overlay

- Direct Placement or Milling
 - Direct placement when all the following are true:
 - Additional structure is necessary
 - No issues with existing pavement materials
 - No vertical limitations
 - Mill when one or more of the following is true:
 - Adequate structure in existing pavement
 - Problems with existing pavement materials
 - Vertical limitations exist
Project Selection
Overlay/Mill and Overlay

- **Good Candidates** include pavements with:
 - Good subgrade, base and cross-section
 - Adequate strength
 - Where a short term fix is acceptable

- **Poor Candidates** include pavements with:
 - Poor subgrade and/or base support
 - Significant surface distresses
Project Selection
Reclamation

- Mill, haul and recycle at HMA plant
- Cold In-place Recycle (CIR)
- Full Depth Reclamation (FDR)
 - Pulverization
 - Stabilization
Project Selection - Recycling

Why Recycle?

- Improve serviceability of aged, deteriorated pavements
- Reduce raw material costs
- Level deformations & re-establish crowns
- Retain overhead clearances
- Minimize lane closure time, user delays
- Public acceptance of recycling
Cold In-place Recycling (CIR)

What is Cold In-place Recycling?

- CIR is the on-site rehabilitation of asphalt pavements without the application of heat during recycling.
- CIR interrupts the existing crack pattern and produces a crack-free layer for the new wearing course.
Cold In-place Recycling (CIR)
The Train Machine Concept

Used when the Engineer’s design requires milled material needs to be screened, be of a uniform size and fully mixed in a pugmill.
Cold In-place Recycling (CIR) Applications for CIR

- Good candidates include pavement with:
 - At least 4” of hot mix
 - Adequate base and subgrade
 - Severe pavement distresses

- Poor candidates include pavements with:
 - Inadequate base or subgrade support
 - Inadequate drainage
 - Paving fabrics or inter-layers
Full Depth Reclamation (FDR)
What is FDR?

- The full thickness of the asphalt pavement and a predetermined portion of the base, subbase and/or subgrade is uniformly pulverized and blended to provide a homogeneous material.

- If new material is not a sufficient base for a new surface course, the reclaimed materials are stabilized by mechanical, chemical or bituminous means.
Full Depth Reclamation

- Typically consists of a combination of asphalt and aggregate base
 - Unstabilized
 - Asphalt Emulsion
 - Engineered Emulsion
 - Commodity Emulsion
 - Foamed Asphalt
 - Cement
 - Base One
 - Blends of 2 or more of the above
Full Depth Reclamation (FDR) Keys to Success

Stabilization Considerations

- Emulsion/Foamed Asphalt Stabilization
 - Mill to 3”- material (95% passing 2”)
 - Combination of Asphalt Pavement and Aggregate Base
 - Emulsion addition rate of 3-6% by weight
 - Foamed asphalt addition rate of 2-4%
 - Lower stiffness, higher flexibility
Cement Stabilization

- Mill to 3”- material
- Can incorporate some plastic subgrade soils
- Cement addition rate of 3-8% by weight,
 - Short working time due to hydration
- Specific design for each project
- Higher stiffness, lower flexibility
Full Depth Reclamation (FDR)

Applications for FDR

- Good Candidates include pavements with:
 - Need for upgrading, widening or rehabilitation
 - Bituminous surface on compacted base that:
 - Has sufficient depth to accommodate reclamation process (at least 2" greater than reclamation depth)
 - Exception: Compatible native materials meeting P200 & SE requirements
 - Generally has up to 20% fines (P200)
Full Depth Reclamation (FDR) Applications for FDR

- Good Candidates (Continued):
 - High severity distresses
 - Ruts
 - Base problems
 - Cracks
 - Edge failures
 - Potholes
 - Good drainage or drainage to be corrected
Full Depth Reclamation (FDR)

Applications for FDR

- Poor Candidates include pavements with:
 - Clay-like native soils
 - Exception: can be stabilized with lime/cement
 - Doesn’t meet P200 criteria & can’t or won’t accept added rock
 - Drainage problems
 - Including ditch & regional flooding problems
Project Selection

- FWD testing, coring, soil borings, ground penetrating radar
 - Identify weak areas and whether subgrade or surface need strengthening
 - Pavement Materials problems
 - Pavement Structure Variability
 - Moisture/drainage problems
Pavement Assessment
Pavement Strength Evaluation

- FWD Testing
 - Data used to calculate pavement strength, capacity and remaining life
Pavement Assessment
Pavement Structure Evaluation

- Ground Penetrating Radar (GPR) Data
 - Provides a “picture” of pavement structure
 - Used for FWD Analysis
Pavement Assessment
Pavement Structure Evaluation

Coring Data

- Pavement layers (surface, base and sub-base) are measured, classified and photographed
- Asphalt cores are measured and analyzed for stripping/segregation
- Data used to calibrate GPR data
Pavement Assessment
Surface, Base and Subgrade Analysis

- Soil Borings
 - Base thickness, type or classification
 - Moisture content
 - Subgrade soil type and contamination
Pavement and Materials Assessment
Approximate Costs

- Coring - $100 - $150 each
- Soil / pavement borings ~$150 - $300 (per mile)
- FWD w/ analysis - $150 to $200 (per mile)
- Ground Penetrating Radar - $150 - $200 (per mile)
- 20 Mile Project in MN ~ $12,000 - $18,000

Costs will vary depending on many factors, especially mobilization and traffic control.
Rehab Comparisons

- GE of asphalt overlay – 2.25 per inch
- Mill and overlay
 - Assume a reduction of GE of 1.5 – 2.0 per inch of milling
 - Increase 2.25 per inch of overlay
- CIR/FDR
 - GE of 1.5 – 2.0 depending upon quality of materials stabilized
Costs

- CIR
 - $100 – 120K per centerline mile (4 inches)
- SFDR – Emulsion or Foamed Asphalt
 - $130 – 150K per centerline mile (6 inches)
- SFDR - Cement
 - $65-90K per centerline mile (12 inches)
- Base One
 - $20-$30K per centerline mile (6 inches)
- Asphalt Overlay
 - $45,000 per centerline mile/inch
Questions?