The Performance of Colored Concrete Pavement in Minnesota

Annual Meeting of the City Engineers Association of Minnesota
January 28th, 2015

Tom Burnham, P.E.
Minnesota Department of Transportation

Office of Materials and Road Research
“Streetscaping”
Delineation
Problem?

6 years old
LRRB Investigation 929

Investigation and Assessment of Colored Concrete Pavement

- Principal Investigator(s):
 - Tom Burnham – MnDOT
 - Ally Akkari – (formerly MnDOT)

- Subcontractor – American Engineering Testing, Inc.
 - Gerard Moulzolf
 - Willy Morrison
 - Larry Sutter (Michigan Tech Univ)
Scope of Study

- Determine project locations
- Perform field evaluation and collect samples
- Laboratory testing and evaluation
- Data analysis and interpretation
- Identify repair and rehabilitation techniques
- Final report with findings and recommendations
Site visits

- Visited 29 of 45 sites listed in 2012 database
- 19 of 29 sites had some type of visible distress
 - Joint deterioration
 - Cracking
 - Severe distress
 - Surface abrasion
 - Edge chipping
 - Smooth surface
- Many sites too new to assess performance
Good Performer: Sauk Rapids (2007)
Good Performer: Detroit Lakes (2011)
Good Performer: Minneapolis (2010)
Good Performers: Roseville (2001)
Joint Deterioration

13 years old
6 years old
14 years old

25 years old

13 years old
Cracking
Severe Distress

13 years old

1 year old

13 years old

11 years old
Edge chipping

6 years old

1 year old
Smooth Surface
Potential Causes for Distress

Construction practices

<table>
<thead>
<tr>
<th>Cause</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand placement</td>
<td>Inadequate consolidation, high porosity</td>
</tr>
<tr>
<td>Over-finishing surface</td>
<td>Excess paste near surface, scaling</td>
</tr>
<tr>
<td>Lack of proper curing</td>
<td>Shrinkage cracking, high early temps</td>
</tr>
<tr>
<td>Infill construction</td>
<td>Raised edges, chipping</td>
</tr>
</tbody>
</table>
Construction practices
Potential Causes for Distress

- Materials related reduction in durability

<table>
<thead>
<tr>
<th>Cause</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low air content</td>
<td>Reduced freeze/thaw resistance</td>
</tr>
<tr>
<td>Secondary ettringite growth</td>
<td>Reduced freeze/thaw resistance, microcracking</td>
</tr>
<tr>
<td>High porosity (high w/cm)</td>
<td>Increased saturation, ingress of deicing chemicals</td>
</tr>
<tr>
<td>Lack of proper curing</td>
<td>Shrinkage cracks, inadequate hydration</td>
</tr>
<tr>
<td>Pigment properties</td>
<td>Poor paste-to-aggregate bond</td>
</tr>
<tr>
<td>Pigment incompatibilities</td>
<td>Chemical attack of paste and/or aggregates</td>
</tr>
</tbody>
</table>
Full-depth macro and microcracking
Aggregate and Paste Dissolution

Green = Iron Blue = Magnesium

SEM
Potential Causes for Distress

- **Chemical attack**

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Carbonation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deicers</td>
<td>Excessive periods of saturation (reactions with aggregates, paste, pigments?)</td>
</tr>
<tr>
<td>ASR</td>
<td>Cracking and expansion of slabs</td>
</tr>
</tbody>
</table>
Alkali Silica Reaction
(Occurring in aggregates not normally reactive in Minnesota)
Potential Causes for Distress

- **Project Design**

<table>
<thead>
<tr>
<th>Cause</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow drainage</td>
<td>Saturation of concrete, increased susceptibility to freeze/thaw damage</td>
</tr>
<tr>
<td>Loss of joint sealant</td>
<td>Saturation of concrete, increased susceptibility to freeze/thaw damage</td>
</tr>
<tr>
<td>Thermal incompatibility</td>
<td>Cracking</td>
</tr>
<tr>
<td>Connection to neighboring slabs</td>
<td>Edge chipping, faulted joints</td>
</tr>
</tbody>
</table>
Thermal Incompatibility
Infilling Issues
Summary of Petrographic Analysis Results

- Micro-cracking through the depth of joints
- A poor bond between paste and aggregate
- High water-to-cementitious ratios (up to 0.50) = High porosity
- Initially adequate hardened air content system
 - Systems now have reduced freeze/thaw resistance
- Surprising presence of ASR in typically sound aggregates used for concrete in Minnesota
- Chemical alteration of paste and aggregates
Summary of SEM Investigation

- Magnesium chloride solutions are permeating the concrete, likely as a result of deicer exposure
- Appears to be strong evidence of paste dissolution
- There appears to be an affinity for iron by magnesium ions
Freeze/Thaw Durability

<table>
<thead>
<tr>
<th>Lab Mix, SSD (pcy) (1)</th>
<th>Mix #1-Control- No pigment - 0.43 w/cm</th>
<th>Mix #3-Pigment 4% - 0.43 w/cm</th>
<th>Mix #3-Pigment 4% - 0.40 w/cm</th>
<th>Mix #4-Pigment 6% - 0.43 w/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lafarge Davenport (lbs)</td>
<td>592</td>
<td>592</td>
<td>592</td>
<td>592</td>
</tr>
<tr>
<td>Portage Fly Ash (lbs)</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>Lakeville +3/4", Coarse Aggregate. (lbs)</td>
<td>742</td>
<td>742</td>
<td>757</td>
<td>742</td>
</tr>
<tr>
<td>Lakeville -3/4", Coarse Aggregate. (lbs)</td>
<td>823</td>
<td>823</td>
<td>839</td>
<td>823</td>
</tr>
<tr>
<td>Lakeville -1/2", Coarse Aggregate. (lbs)</td>
<td>274</td>
<td>274</td>
<td>280</td>
<td>274</td>
</tr>
<tr>
<td>Lakeville Fine Aggregate (lbs)</td>
<td>966</td>
<td>966</td>
<td>985</td>
<td>966</td>
</tr>
<tr>
<td>Water (lbs)</td>
<td>299.0</td>
<td>299.0</td>
<td>278.4</td>
<td>299.0</td>
</tr>
<tr>
<td>Vinsol Resin, Air Entrainer (oz/cwt)</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>Pigment, % by weight of cementitious</td>
<td>---</td>
<td>4.0</td>
<td>4.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Water to Cementitious Ratio</td>
<td>0.43</td>
<td>0.43</td>
<td>0.40</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Fresh Properties

<table>
<thead>
<tr>
<th></th>
<th>Mix #1-Control- No pigment - 0.43 w/cm</th>
<th>Mix #3-Pigment 4% - 0.43 w/cm</th>
<th>Mix #3-Pigment 4% - 0.40 w/cm</th>
<th>Mix #4-Pigment 6% - 0.43 w/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Weight, pcf</td>
<td>144.0</td>
<td>145.2</td>
<td>144.8</td>
<td>146.0</td>
</tr>
<tr>
<td>Slump (in)</td>
<td>4.00</td>
<td>4.00</td>
<td>3.25</td>
<td>3.75</td>
</tr>
<tr>
<td>Air Content (%)</td>
<td>7.0</td>
<td>6.2</td>
<td>6.8</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Average (2) ASTM C666, Rapid Freezing and Thawing, Proc. A, Relative dynamic modulus, %

<table>
<thead>
<tr>
<th></th>
<th>Mix #1-Control- No pigment - 0.43 w/cm</th>
<th>Mix #3-Pigment 4% - 0.43 w/cm</th>
<th>Mix #3-Pigment 4% - 0.40 w/cm</th>
<th>Mix #4-Pigment 6% - 0.43 w/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 Cycles</td>
<td>94</td>
<td>89</td>
<td>97</td>
<td>92</td>
</tr>
</tbody>
</table>

Notes:

1. Mix design provided by MnDOT. Mix identified as "Mix 3A21 HEF" July 2000. Mix adjusted for higher water to cementitious requirements of this study.
2. Average of three 3x3x11-1/4-in beams.
ASTM C1567 Test Results for Fine Aggregate, % Expansion

- Mix #1-Control-0.43 w/cm
- Mix #2-0.43 w/cm; Pigment 4%
- Mix #3-0.40 w/cm; Pigment 4%
- Mix #4-0.43 w/cm; Pigment 6%

Time, days:
- 4 days
- 7 days
- 11 days
- 14 days
- 21 days
- 28 days

% Expansion:
- 0.000
- 0.050
- 0.100
- 0.150
- 0.200
- 0.250
- 0.300
- 0.350

ASR Testing
Overall Findings of Study

- Early distress has and continues to occur in colored concrete pavements throughout Minnesota
- Current placement practices are not the primary cause for the distress (secondary cause?)
- The primary cause for early joint deterioration is the high porosity of the mixes
- Deicing chemicals may be accelerating the distresses
- Designers must consider thermal compatibility with surrounding areas
- Chemical attack and ASR has been identified in both field samples and lab produced mixes
Recommendations

- Reduce the porosity of colored concrete mixes
 - Specify w/cm ratio < 0.43 (lower = better)
 - Increase consolidation during placement
- If possible, limit the application of magnesium-based deicers on colored concrete
- Investigate whether ASR mitigation possible with higher % of flyash and/or slag
- Construct adequate texture
- Consider alternative ways to produce colored concrete (other than full-depth color)
Questions?