DCT Testing for Bituminous Mixture Fracture Resistance

Dave Van Deusen, MnDOT OMRR

Annual Meeting of the City Engineers Association of Minnesota
January 28, 2015
Acknowledgements

- Contractors and Producers
- U of MN Duluth
 - Dr. Eshan Dave
 - Chelsea Hanson
- U of MN Twin Cities
- U of Illinois
- Bituminous Office
- MnDOT Districts - Construction and Materials Offices
- Luke Johanneck
Outline

• Introduction and background of fracture energy performance testing
• MnDOT previous efforts
 • Pooled-fund projects
 • 2013 implementation pilots
• Current work
• Future
• Summary
Why Performance Testing on Asphalt Mixtures?

• Thermal cracking is a major distress on MN pavement

• Binder specs are important...
 • But do not completely define actual mixture behavior

• Mixture performance testing provides specific information of material on roadway

• Needed to account for modifications
PG Binders and Cracking

• PG low temperature of -34C is common
 • Performance has been very good for the most part
• However, thermal cracking after 1-2 years with some -34C mixes has been observed
 • Not all PGLT -34 binders are equal
• Mixture G_f relates to temperature performance
 • More discriminating than binder PG
What is the DCT?

- DCT=Disc-shaped Compact Tension test
- Low-temperature performance test for asphalt mixtures
- Pooled-Fund Studies recommended DCT for low-temperature fracture resistance
Disc-Shaped Compact Tension Test

- ASTM D7313-13
- Has existed for some time
- U of Illinois applied to HMA
- Test is run at low temperature
 - PGLT + 10C
 - LTPPBind PG Temp at 98% Rel. +10C
- Loading Rate based on CMOD
 - 0.0170 mm/sec
- Data acquisition
 - CMOD, Load

CMOD = Crack mouth opening displacement
Disc-Shaped Compact Tension Test

- Measures the fracture energy \((G_f) \) of the mixture at specific temperature

\[G_f = \frac{\text{Fracture Work}}{\text{Fracture Area}} \]

Fracture Area = Thickness * Length (initial ligament length)

\(G_f \) units: \(\text{J/m}^2 \)
Pooled Fund Projects – Findings 2004-2012

- Two separate projects
- Binder tests alone are insufficient
 - Critical need for an asphalt mixture specification
- Current specifications for LTC for both asphalt binders and mixtures are based on static creep tests and do not include a fracture test.
- Strongly recommended that selection of fracture resistant binders and mixtures be based on simple-to-perform true fracture tests.
Why was the DCT selected?

- Covered by ASTM procedure
- Follows procedure used for other materials (metals)
- CV of 10% observed for many of the tests
- Good correlation with field performance
Results from LTC Pooled-Fund Study
LTC Performance Specifications

- Based on traffic levels
- Limits based on:
 - Fracture energy tests @ +10C above 98% reliability Superpave low temperature PG (PGLT)
 - Low temperature cracking performance model (IlliTC)

<table>
<thead>
<tr>
<th>Project Criticality / Traffic Level</th>
<th>High (>30M ESALs)</th>
<th>Medium (10-30M ESALs)</th>
<th>Low (<10 M ESALs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum DCT G_f</td>
<td>690</td>
<td>460</td>
<td>400</td>
</tr>
<tr>
<td>IlliTC Cracking Prediction (m/km)</td>
<td>< 4</td>
<td>< 64</td>
<td>Not required</td>
</tr>
</tbody>
</table>
DCT Pilot Project (2013)

• Develop and implement:
 • Decision system for non-compliant material
• Test procedure
 • Research → Production
• Equipment
• Training
Mix design pills submitted to UMD by contractor for DCT testing.

Minimum fracture energy of 400 J/m² met?

- **YES**: Production mix tested with DCT.
 - Test section paved with adjusted mix.
 - Mixture adjustments recommended, such as:
 - Increase binder content
 - Use harder, crushed quarry rock, etc.
 - Reduce RAP or RAS content

- **NO**: Mixture adjustments recommended.
 - Does production mix meet 400 J/m² requirement?
 - Did mixture adjustments improve fracture energy?
 - Did fracture energy change from mix design to production?
Possible Mixture Adjustments
Included in Special Provision

- Binder grade
 - Reduce low PG (-34 vs -28)
- Add or change polymer, modification
- Aggregate Gradation
 - Finer gradation
 - Increase binder content
- Aggregate source & crushing
 - Granite/taconite instead of limestone
 - Reduce RAP/RAS content
Projects

• 5 projects

• Variety of climates, binders, construction
 • D2 – TH 310, FDR + Overlay, 58-34
 • D3 – TH 371, Reconstruct, 64-34
 • Metro – TH 10, M & O, 64-28
 • D6 – TH 56, SFDR + Overlay, 58-34
 • D6 – TH 69, M & O, 58-28
Three mixes failed to meet min G_f of 400 J/m2 at mix design

Remaining two mixes did meet the min G_f

- Traffic level 4 designs (more crushed agg.)
- Polymer modified

A significant decrease in energy from mix design to standard production mix was observed

- Topic of current investigation
TH 56 – SPWEA340C, tested @ -24C
Note production decrease relative to mix design;
Adjustment made: 0.1% additional binder.
TH 310 – SPWEB340C, tested @ -30C
Note low value in first mix design;
Adjustment made: eliminate 20% RAP, stockpile feeds adjusted.
TH 10 – SPWEB440E, tested @ -24C
No adjustment made;
Note drop in fracture energy at mix production.
TH 69 – SPWEA440F, tested @ -24°C
No mix design data;
Adjustment made: reduce RAP from 30% to 20%, stockpile feeds adjusted.

![Graph showing Fracture Energy (J/m²) for various TH samples.](#)
TH 371 – SPWEB340B, tested @ -18C
No adjustment required;
Note drop in fracture energy at mix production;
Summary and Conclusions

- Mix designs must use same materials that will be used in production (esp. binder)
- Only two projects passed at mix design
 - Level 4 designs
 - Investigate further effects of higher percent crushing aggregate may create higher aggregate interlock, causing better cracking resistance.
- Significant drop in fracture energy from mix design to production was observed
 - Reasons outside of scope for this study, but are the subject of current work
Current Work

• “Round Robin” inter-laboratory repeatability study
 • Samples collected this fall, with testing to start this winter
• Participating labs include Braun, AET, UMD, and MnDOT
Current Work

- Study analyzing source of drop in fracture energy from mix design to production and placement
- Samples collected from 8 projects throughout the state
National Pavement Preservation

• **Partnerships**
 – MnROAD (North) / NCAT (South) Test Tracks
 • Offsite Low and High Volume Road Installations
 • Concrete and Asphalt Pavements
 • Includes Past/Current MnROAD Cells
 – FP² / National Center for Pavement Preservation
 – Government / Academia / Industry involvement

• **Getting Involved**
 – National Webinar Held – January 8th
 – March 2015 NCAT Planning Meeting
 • Direct input into the study
 – Pooled Fund posted jointly with NCAT
 • http://www.pooledfund.org/Details/Study/496
 • 2015 will use same study # (120K / year for 3-years)
Questions?

Dave Van Deusen
651-366-5524
Dave.vandeusen@state.mn.us

Chelsea Hanson
651-366-5482
Chelsea.hanson@state.mn.us

Testing Questions?
Joe Voels
651-366-5518
joseph.voels@state.mn.us